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TIPS & TRICKS 
Class-XII

Subject: MATHEMATICS
Chapter Name : Integral Calculus (Chap :  7)

INDEFINITE INTEGRAL :
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4.		 f x dx F x c f ax b dx
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a x
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−∫ , put  x = a tanθ. or x = a cot θ .

6.		
dx

a x
or a x dx
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−∫  , put  x = a sinθ. or x = a cos θ .

7.		
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x a
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−
−∫ , put  x = a secθ. or x = a cosec θ .

8.		
a x
a x

dx−
+∫  , put  x = a cos2 θ .

9.		 a
x

dx or x x dx−
− − −∫ ∫a

b
a b( )( ) , put x = α cos2θ + β sin2θ.

10.		
a
x

dx or x x dx−
− − −∫ ∫a
b

a b( )( ) , put x = α sec2θ – β tan2θ.

11.		
dx

x x( ) ( )− −∫ a b
 , put (x – α) = t2  or  (x – β) = t2

12.		 Integration By Parts :

			  uv dx u vdx u vdv dx= − ′

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		  use  I L A T E   RULE :-
		 I → Inverse function,	 L → logarithmic function
		 A → Algebraic function,	 T – trigonometric function.
		 E → Exponential function.

13.		 sin cosm nx x dxò
		  Case I : m, n∈ N → 

m, n both are odd substitute either of the term.

m, n both are even convert them multiple angles.

one of them is odd, substitute the term of even power.

		 Case II : m, n∈Q such that (m + n) = negative even integer substitute tan x = t.

14.		 dx

a b x
or dx

a b x
or dx

a x b x x c x+ + + +∫∫∫ sin cos sin sin .cos cos2 2 2 2
  put tan x = t.
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		  put  tan & sin , cosx t x t

t
x t

t2
2

1

1

12

2

2






= =

+
= −
+

				    x t dx dt

t
= =

+
−2 2

1
1

2
tan ;

16.		 a x b x c
p x q x r

dxcos sin
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		  Nr = l(Dr) + m(Dr)  + n.

17.		 p x
q x
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 where p(x) & q(x) are polynomials such that degree of p(x) ≥ degree of q(x).

		 ⇒ p x
q x

t x
p x
q x
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= + 1  where degree of p1 (x) is less than degree of q(x).
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ax bx c
ax bx c dx
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		 Express ax2 + bx + c  in the form of perfect square.

19.		 px q

ax bx c
dx

px q

ax bx c
dx

+
+ +

+
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∫∫ 2 2

,

		 Express px + q = l (Dr)  + m
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ax b px q

dx

ax bx c px q( )
&
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, put px + q = t2.
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∫ 2
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t
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23.		 dx

x xn( )+∫ 1
, n∈N take xn common & put 1 + x–n = t		

DEFINITE INTEGRALS :

1.		 The fundamental theorem of calculus (Part 1) :  g x f t dt a x b g x f x
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		  The fundamental theorem of calculus (Part 2) :  f x dx F b F a F x f x
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9.		 Wallis formula :
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 (put r = 0) (ie. initial value of r)
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 (put r = n – 1) (ie. final value of r)

12.		 If f(x) ∈ [m, M]  then m(b – a) ≤ ≤ −∫ f x dx M b a
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13.		 If  f(x) ≤ φ (x)  for a ≤ x ≤ b then
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